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For graphite monochromatized X-rays, In(0) corre- 
sponding to In(z) is not constant and the integral in 
(31) cannot be evaluated. In spite of this it is common 
practice to consider I o v/a' as constant and to use (33) 
for the determination of observed structure factors on a 
relative scale. The error arising by neglect of the first 
part in (30) is about 1% as was estimated from three 
reflection profiles with different Bragg angles. How- 
ever, this error scarcely varies with the Bragg angle so 
that for relative measurements the effective error 
reduces to about O. 2%. 

The error caused by considering a' as constant in 
(33) may rise to about 2% depending upon which scan 
intervals are chosen and which Bragg-angle range is 
covered during data collection. 

The final version of this article was considerably 
influenced by a referee of Acta Cryst., which kindly is 
acknowledged. Thanks are due to Professor Th. Hahn 

for his interest in this work and for giving the 
opportunity for its completion. 
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Abstract 

The Euclidean normalizers of space groups form the 
appropriate mathematical tool for several problems 
treated independently by crystallographers in the past, 
e.g. the comparison, the classification and the standard- 
ized description of crystal structures. Explicit tables are 
presented that enable the user to handle Euclidean 
normalizers in an easy way and, especially, to calculate 
all descriptions of a crystal structure compatible with a 
chosen space-group setting. The use of the tables is 
illustrated by different examples, and the role of 
Euclidean normalizers for crystal-structure determina- 
tion is discussed. 

1. Introduetlon 

Depending on the position of a representative point, 
point configurations (i.e. sets of symmetrically equiva- 
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lent points) of a given space group in general differ with 
respect to their geometrical properties. For a study of 
these properties all different cases are covered if the 
coordinates of such a reference point are varied over 
the whole range of an asymmetric unit. In most space 
groups, however, it is possible to confine the parameter 
variation to a smaller region by taking into account the 
symmetry of the pattern of symmetry elements. In 
plane group pgg, for instance, Laves (1931) derived all 
possible plane partitions into Dirichlet domains by 
considering only the range 0 < x,y < ¼ instead of the 
asymmetric unit 0 < x,y < ½ 'for reasons of 
symmetry'. Under the term 'reduced asymmetric units' 
this principle has been revived by Fischer (1968) in a 
paper on the packing of circles in a plane. Later it was 
applied in connection with sphere packings (Fischer, 
1970, 1971, 1973, 1974)and  Dirichlet partitions 
(Koch, 1972, 1973). For a classification of point 
configurations by means of symmetry, shortest dis- 
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908 THE EQUIVALENCE OF POINT CONFIGURATIONS 

tances and types of Dirichlet partitions the results are 
also given only for such reduced asymmetric units 
(Koch, 1983), i.e. in a most economic way. 

Closely related to this is the problem of the different 
possibilities to describe a crystal structure or to place 
the first atom(s) in a trial structure, even if the size and 
the shape of the unit cell have been fixed. For all space 
groups, Hirshfeld (1968) has derived and tabulated the 
groups of all transformations that map such different 
possibilities onto each other and has called them 
Cheshire groups. He demonstrates by the example of 
I4~22 how all transformed coordinate triplets can be 
derived by means of Cheshire groups from the 
coordinate triplets listed in International Tables for  
X-ray Crystallography (1952). 

As Hirshfeld's example shows, such a derivation is 
not always trivial, because the standard descriptions of 
a space group and its Cheshire group may differ with 
respect to the orientation of their unit cells and to the 
choice of origin. Therefore, it is helpful to have 
available explicit tables which enable the user to 
transform a given description of a crystal structure into 
all analogous ones. Such more detailed information has 
proved to be very useful for the classification of crystal 
structures (cf. Koch & Hellner, 1981; Hellner, Koch & 
Reinhardt, 1981), and is necessary if a standardized 
description of crystal structures is aimed at (Parth6 & 
Gelato, 1983). 

Similar relations between point configurations (or 
crystallographic orbits, c f  Wondratschek, 1976) play 
an important role in the assignment of Wyckoff 
positions to lattice complexes (Fischer & Koch, 1974, 
1983; Koch & Fischer, 1978) and led to the derivation 
of the automorphism groups of the space groups (Koch 
& Fischer, 1975). Parallel to this, the related problems 
of interchangeable Wyckoff positions (Boyle & Law- 
renson, 1973, 1978), of permissible origin shifts in 
direct methods (Giacovazzo, 1974), of interchangeable 
subgroups of space groups (Zarrouk & Billiet, 1975; 
Sayari & Billiet, 1975; Billiet, Sayari & Zarrouk, 1978), 
of automorphism groups of point groups (Billiet, 1975) 
and of standard settings of triclinic and monoclinic 
space groups (Sayari & Billiet, 1977) have been treated. 

The mathematical concept underlying and connect- 
ing all these studies - though not mentioned in any of 
the corresponding papers - is that of the normalizer of a 
group with respect to one of its supergroups. Though 
this concept is well established in mathematics, its 
significance for such crystallographic problems was 
pointed out only a few years ago by Wondratschek 
(1980). Ascher (1974) did apply normalizers to 
determine the relativistic symmetry of a crystal 
structure. He introduced the term symmetry o f  the 
symmetry in this connection, but his paper seems to 
have escaped most crystallographers' notice. Subse- 
quently, Burzlaff & Zimmermann (1980) have ex- 
plicitly used normalizers when establishing 'privileged 

origins'. Their table of the affine normalizers of space 
groups has been supplemented with respect to those of 
the monoclinic and triclinic groups by Billiet, Burzlaff 
& Zimmermann (1982). Another study on normalizers 
and automorphism groups of symmetry groups has 
recently been published by Gubler (1982), who tried to 
elaborate a strictly mathematical algorithm for the 
derivation of these groups. He himself admits, how- 
ever, that two steps in his procedure 'still require some 
intuition'. 

2. Normalizers of space groups 

The normalizer Nn(G)  of a group G with respect to one 
of its supergroups H is the set of all elements h E H 
that map G onto itself by conjugation: 

Nx(G): = {h C H I h G h - ' =  a}. 

The normalizer NH(G) is always a group intermediate 
between G and H: G c NH(G ) c H. It is the largest 
such intermediate group that contains G as a normal 
subgroup. Therefore, it describes to a certain extent, 
fixed by the choice of H, the symmetry of the group G. 

If G is a crystallographic group, the group elements, 
i.e. the symmetry operations, are isometries. So a 
natural choice for H is the Euclidean group E, the 
group of all isometries. The corresponding normalizer 
N~(G) is called the Euclidean normalizer of G. 

If G especially is a space group its Euclidean 
normalizer is identical to the Cheshire group introduced 
by Hirshfeld (1968), i.e. the symmetry group of the 
pattern of symmetry elements (el  Koch & Fischer, 
1975; Gubler, 1982): Let gl, g2 C G be any pair of 
symmetry operations conjugate with respect to an 
element h E NE(G), i.e. hglh -1 = g2, and let x l , x '  1 be 
any pair of points mapped onto each other by gl, i.e. 
x' 1 = gl (x  O. As h also is an isometry, it operates on the 
points x I and x' 1 and maps them onto x 2 = h(x 1) and 
x~ = h(x'l). Then it follows that x~ = h(x '  1) = -  hgl(x 1) 
= hglh-l(x2) = g2(x2), i.e. h maps each pair of 
symmetry-related points onto another such pair, the 
symmetry element of gl onto the symmetry element of 
g2 and the entire pattern of symmetry elements of G 
onto itself. Conversely, each symmetry operation of the 
pattern of symmetry elements of G is contained in the 
Euclidean normalizer Ne(G) if symmetry elements are 
understood as geometric objects with certain qualities 
attached to them. 

Euclidean normalizers may be used if, in a crystallo- 
graphic problem, the lattice parameters have fixed 
values, i.e. if a specified space group from a given 
space-group type (Neubfiser & Wondratschek, 1966; 
Wondratschek, 1983) is considered. This is the case for 
most of the problems connected with the determination, 
the description and the comparative discussion of crystal 
structures. As has also been stated by Gubler (1982), 
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space groups of the same type may differ with respect 
to the type of their Euclidean normalizers. This situation 
occurs if the same symmetry exists in symmetrically 
inequivalent directions (e.g. in a, b and c directions in 
Pmmm): special values or relationships for the lattice 
parameters (a = b 4: c or a = b = c) may give rise to 
more comprehensive Euclidean normalizers (tetragonal 
or cubic, respectively, instead of orthorhombic for the 
general case). 

For certain theoretical problems, like the derivation 
of subgroups and the definition of lattice complexes, the 
following choice of H is more advantageous: if H is the 
affine group A, the group of all affine mappings, the 
normalizer N A (G) is called the affine normalizer of G. 
The relation between a space group and its affine 
normalizer is the same for all space groups of the same 
type. NE(G) is a true subgroup of NA(G) for all triclinic 
and monoclinic space groups, but is equal to N A (G) for 
all tetragonal, trigonal, hexagonal and cubic ones. With- 
in the orthorhombic crystal system, NE(G) -- NA(G) 
normally holds for all space groups of the same type; 
both normalizers differ, however, for space groups of 
type P222~, P2~2~2, C222~, C222, Pmm2, Pcc2, 
Pba2, Pnn2, Cmm2, Ccc2, Fmm2, Fdd2, Imm2, Iba2, 
Pccm, Pban, Pbam, Pccn, Pnnm, Pmmn, Cmmm, 
Cccm, Cmma, Ccca, Ibam, and lmma unless a = b, and 
for space groups of type P222, P2~2~2~, F222, I222, 
I2~2~21, Pmmm, Pnnn, Pbca, Fmmm, Fddd, Immm, 
and Ibca unless a = b = c. 

3. Equivalent point configurations and possible 
descriptions of crystal structures 

As has been shown above, each element h of the 
Euclidean normalizer N~(G) of a space group G maps 
any pair of points symmetrically equivalent with 
respect to G onto another such pair. An element of 
Ne(G ), therefore, maps each point configuration of G 
onto a point configuration of the same space group. 
This property of the Euclidean normalizer gives rise to 
the following definition: Two point configurations of 
the same space group G are called equivalent, if they 
are mapped onto each other by an element h E NE(G). 
As the elements of the Euclidean normalizer are 
isometries, such equivalent point configurations are 
always directly or inversely congruent. They form 
equivalence classes, each of which is generated by 
applying all elements of NE(G) to any point con- 
figuration out of the class. If i is the index of G with 
respect to its supergroup Ne(G), the number of point 
configurations in such a class is i in the general case. 
This number may become less than i, however, for 
point configurations belonging to limiting complexes 
(cf. Fischer & Koch, 1983) and for point con- 
figurations of special positions. 

Equivalent point configurations may belong to the 
same Wyckoff position. Then the part of the Wyckoff 
position within one asymmetric unit of the normalizer is 
smaller than that within one asymmetric unit of the 
space group. If, on the contrary, equivalent point 
configurations belong to different Wyckoff positions, 
all these positions together form a Wyckoffset (called 
Konfigurationslage by Koch & Fischer, 1975, cf. 
Wondratschek, 1983; Fischer & Koch, 1983). Such a 
Wyckoff set corresponds to one Wyckoff position of 
NE(G), if Ne(G) itself is a space group (cf. below). 

In the same way, sets made up from several point 
configurations may be duplicated. From one such set 
the Euclidean normalizer generates at most i equivalent 
sets, which may coincide in some of their point 
configurations. Different coordinate descriptions of one 
and the same crystal structure correspond to such 
equivalent sets of point configurations: if a crystal 
structure is described in the highest possible space 
group, then there exist exactly i different descriptions 
referring to the same space-group setting. All these 
possible descriptions are obtained by applying the 
Euclidean normalizer to a given description. In this 
procedure, the symmetry operations of the space group 
itself reproduce the original description and each of the 
i - 1 additional cosets of the space group within its 
Euclidean normalizer generates one of the additional 
possible descriptions. Different isometries from the 
same coset only result in interchanged points (or 
atoms) within the same description. 

The ambiguity of crystal-structure description exists 
for all space groups except for Im3m and Ia3d. Each 
space group of one of these types coincides with its 
Euclidean normalizer and, therefore, shows unique 
point configurations and, in consequence, unique 
descriptions of crystal structures. 

If less than i different descriptions of a crystal 
structure are produced by the Euclidean normalizer, at 
least one coset other than the space group itself 
reproduces the original description. In this case, the 
original space group is not properly chosen, because it 
does not contain the entire symmetry of the crystal 
structure, its inherent symmetry. For example, the 
structure of fl-Hg4Pt has been described in Structure 
Reports (1953), in space group I432 with Pt at 2(a) 
0,0,0, and Hg at 8(c) ~ ~ ~ As the subgroup index i of ;~,~,:~. 

I432 in its Euclidean normalizer Im3m is 2, there 
should exist two different descriptions of this crystal 
structure. All additional symmetry operations of Im3m, 
however, leave the given description unchanged. The 
symmetry offl-Hg4Pt, therefore, must at least be Im3m. 
This reasoning cannot be reversed, however: the 
number of different descriptions of a crystal structure 
in a given space group may be i, though this space 
group is not its inherent symmetry. The structure of 
fl-tungsten, for instance, may be described in la3d by O 
at 16(a) 0,0,0 and W at 48(g) ~, x, ~- - x with x = ~. 
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Table 1. Characterization of the Euclidean normalizers of space groups: number and symbol of space group in 
columns 1 and 2, references to Tables 2 and 3 in columns 3 and 4, respectively 

1 P1 2 2A 33 Pna21 13 8B 102 P42nm 23 4G 163 P31c 37 4 0  
2 P I  1 8D 34 Pnn2 13 8B 103 P4cc 23 4G 164 P3ml 37 4 0  
3 P i12  5 8B 35 Cmm2 13 4E 104 P4nc 23 4G 165 P3cl 37 4 0  
3 P121 6 8A 36 Cmc21 13 4E 105 P42mc 23 4G 166 R3m (h) 25 2H 
4 P1121 5 8B 37 Ccc2 13 4E 106 P42bc 23 4G 166 R3tn (r) 26 2G 
4 P12~I 6 8A 38 Amm2 13 4E 107 14ram 23 2E 167 R3c(h) 25 2H 
5 A l l 2  5 4E 39 Abm2 13 4E 108 14cm 23 2E 167 R3c(r) 26 2G 
5 B I I 2  5 4F  40 Area2 13 4E 109 14lind 24 2E 168 P6 39 41 
5 1112 5 4E 41 Aba2 13 4E 110 14~cd 24 2E 169 P61 35 2E 
5 C121 6 4D 42 Fmm2 13 2D 111 PS~2m 18 8G 170 P65 35 2E 
5 A121 6 4C 43 Fdd2 14 2D 112 P42c 18 8G 171 P6~ 35 2E 
5 1121 6 4C 44 lmm2 13 4E 113 P42~m 18 8G 172 P64 35 2E 
6 Pllm 7 4A 45 Iba2 13 4E 114 P~21c 18 8G 173 P6j  39 41 
6 Plml 8 4B 46 lma2 13 4E 115 P4m2 18 8H 174 P6 38 24B 
7 Plla 7 4A 47 Pmmm 9 8D 116 P4e2 18 8H 175 P6/m 37 4P 
7 Plln 7 4A 48 Pnnn(222) 9 8D 117 P4b2 18 8H 176 P63/m 37 4P 
7 Pllb 7 4A 48 Pnnn(l) 9 8D 118 PT~n2 18 8H 177 P622 37 4P 
7 Plcl 8 4B 49 Pccm 9 8D 119 17~m2 22 81 178 P6j22 29 2H 
7 Plnl 8 4B 50 Pban (222) 9 8D 120 14c2 22 81 179 P6522 32 2H 
7 Plal 8 4B 50 Pban(i) 9 8D 121 142m 18 4M 180 P6222 32 2H 
8 Al lm 7 2B 51 Pmrna 9 8D 122 17~2d 20 4M 181 P6422 29 2H 
8 Bl lm 7 2B 52 Pnna 9 8D 123 P4/mmm 18 4L 182 P6.~22 37 4P 
8 l l lm  7 2B 53 Pmna 9 8D 124 P4/mcc 18 4L 183 P6mm 39 2E 
8 Clml 8 2C 54 Pcca 9 8D 125 P4/nbm (422) 18 4L 184 P6cc 39 2E 
8 Alml 8 2C 55 Pbam 9 8D 125 P4/nbm(2/m) 19 4L 185 P6.~cm 39 2E 
8 l lml  8 2C 56 Pccn 9 8D 126 P4/nnc(422) 18 4L 186 P63mc 39 2E 
9 Al ia  7 2B 57 Pbcm 9 8D 126 P4/nne(T) 19 4L 187 P6m2 38 12B 
9 Blln 7 2B 58 Pnnm 9 8D 127 P4/mbm 18 4L 188 P(~c2 38 12B 
9 l l lb  7 2B 59 Pmmn(mm2) 9 8D 128 P4/mnc 18 4L 189 P62m 37 4 0  
9 C l c l  8 2C 59 Pmmn(i) 9 8D 129 P4/nmm(4m2) 18 4L 190 P62c 37 4 0  
9 A lnl 8 2C 60 Pbcn 9 8D 129 P4/nmm(2/m) 19 4L 191 P6/mmm 37 2H 
9 l lal  8 2C 61 Pbca 9 8D 130 P4/nce(7~) 18 4L 192 P6/mcc 37 2H 

I0 Pll2/m 3 8D 62 Pnma 9 8D 130 P4/nec (1) 19 4L 193 P6.Jmcm 37 2H 
10 Pl2/ml 4 8D 63 Cmcm 9 4K 131 P4z/mmc 18 4L 194 P63/mmc 37 2H 
i l  Pll2t/rn 3 8D 64 Cmca 9 4K 132 P42/mem 18 4L 195 P23 46 8K 
11 P12t/ml 4 8D 65 Cmmm 9 4K 133 P4Jnb¢(4) 18 4L 196 F23 48 16D 
12 All2/m 3 4L 66 Cccrn 9 4K 133 P42/nbc(l) 19 4L 197 123 46 4S 
12 Bll2/m 3 4L 67 Cmma 9 4K 134 P4Jnnm(7~2m) 18 4L 198 P213 49 8L 
12 ll12/m 3 4K 68 Ccca (222) 9 4K 134 P4z/nnm (2/m) 19 4L 199 1213 49 4T 
12 C12/ml 4 4K 68 Ccca (1) 9 4K 135 P4z/mbc 18 4L 200 Pm3 46 4Q 
12 A12/ml 4 4L 69 Fmmm 9 2G 136 P42/mnm 18 4L 201 Pn3 (23) 46 4Q 
12 l12/ml 4 4K 70 Fddd(222) I0 2G 137 P4,./nmc(4m2) 18 4L 201 Pn3 (3) 47 4Q 
13 Pll2/a 3 8D 70 Fddd(]) 11 2G 137 P4z/nmc(l) 19 4L 202 Fro3 43 4Q 
13 P112/n 3 8D 71 Immm 9 4K 138 P42/nem (4) 18 4L 203 Fd3 (23) 44 4Q 
13 Pll2/b 3 8D 72 lbam 9 4K 138 P4Jnem(2/m) 19 4L 203 Fd3 (3) 45 4Q 
13 Pl2/cl 4 8D 73 Ibca 9 4K 139 14/mmm 18 2H 204 lm3 46 2J 
13 P12/nl 4 8D 74 lmma 9 4K 140 14/mcm 18 2H 205 Pa3 41 2G 
13 Pl2/al 4 8D 75 P4 23 8C 141 141/amd(71m2) 20 2H 206 la3 49 2K 
14 Pll21/a 3 8D 76 P41 17 4G 141 141/amd(..2/m) 21 2H 207 P432 46 4R 
14 Pll2Jn 3 8D 77 P4 z 23 8C 142 141/acd(4) 20 2H 208 P4232 46 4R 
14 Pll2~/b 3 8D 78 P4~ 17 4G 142 14~/acd(l) 21 2H 209 F432 43 4Q 
14 P12Jcl 4 8D 79 14 23 4H 143 P3 40 24A 210 F4132 44 4Q 
14 P12~/nl 4 8D 80 141 24 4H 144 P31 36 12A 211 1432 46 21 
14 Pl21/al 4 8D 81 P/~ 18 16B 145 P3 z 36 12A 212 P4332 42 2G 
15 All2/a 3 4L 82 Izi 22 16C 146 R3(h )  27 41 213 P4132 42 2G 
15 Bll2/n 3 4L 83 P4/m 18 8H 146 R3( r )  28 4J  214 14132 49 21 
15 ll12/b 3 4K 84 P4Jm 18 8H 147 P3 37 8J 215 P~I3m 46 4R 
15 C12/el 4 4K 85 P4/n (71) 18 8H 148 R3 (h) 25 4N 216 F743m 48 8F 
15 A l2/nl 4 4L 85 P4/n(1) 19 8H 148 R3( r )  26 4Q 217 143m 46 21 
15 l12/al 4 4K 86 P4z/n(7~) 18 8H 149 P312 38 24B 218 P43n 46 4R 
16 P222 9 16A 86 P4~/n(T) 19 8H 150 P321 37 8J 219 F43c 48 8F 
17 P2221 9 16A 87 14/m 18 4P 151 P3112 31 12B 220 143d 49 21 
18 P212~2 9 16A 88 14,/a (~) 20 4M 152 P3~21 30 4 0  221 Pm3m 46 2G 
19 P212t2 ~ 9 16A 88 14~/a (1) 21 4M 153 P3~12 34 12B 222 Pn3n (432) 46 2G 
20 C222~ 9 8E 89 P422 18 8H 154 P3~21 33 4 0  222 Pn3n (3) 47 2G 
21 C222 9 8E 90 P42~2 18 8H 155 R32(h)  25 4N 223 Pm3n 46 2G 
22 F.222 12 8F 91 P4~22 16 4L 155 R32 (r) 26 4Q 224 Pn3m (43m) 46 2G 
23 /222 9 8E 92 P4~2~2 15 4L 156 P3ml 40 12A 224 Pn3m (3m) 47 2G 
24 I212t2 ~ 9 8E 93 P4z22 18 8H 157 P31m 39 41 225 Fm3m 43 2G 
25 Pmm2 13 8B 94 P4z212 18 8H 158 P3cl 40 12A 226 Fm3c 43 2G 
26 Pmc2~ 13 8B 95 P4~22 16 4L 159 P31e 39 41 227 Fd3m(7~3m) 44 2G 
27 Pcc2 13 8B 96 P4~212 15 4L 160 R3m (h) 27 2E 227 Fd3m (3m) 45 2G 
28 Pma2 13 8B 97 1422 18 4P 160 R3m (r) 28 2F 228 Fd3e(23) 44 2G 
29 Pca2~ 13 8B 98 14t22 20 4M 161 R3c(h) 27 2E 228 Fd3c(3) 45 2G 
30 Pnc2 13 8B 99 P4mm 23 4G 161 R3c(r) 28 2F  229 lm3m 46 IA 
31 Pmn21 13 8B 100 P4bm 23 4G 162 P31m 37 4 0  230 la3d 49 IA 
32 Pba2 13 8B 101 P4~cm 23 4G 
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Here, the description is unique and i = 1, though the 
inherent symmetry is higher, namely the supergroup 
Pm3n of la3d. 

For most space groups, the Euclidean normalizer is a 
space group again and then the corresponding sub- 
group index i is finite. This is not the case, however, for 
all space groups from crystal classes 1, 2, 3, 4, 6, m, 
mm2, 3m, 4mm, and 6mm: the pattern of symmetry 

elements for such a space group is mapped onto itself 
by continuous translations in at least one direction and 
each symmetry operation is transformed into itself by 
conjugation with each such translation. The Euclidean 
normalizer then may be imagined as a limiting case of a 
space group due to infinitesimal shrinking of lattice 
translations in one, two, or three direction(s) of 
degeneration, but is not a space group itself. Accord- 

T a b l e  2. Euclidean normalizers of  space groups: 
reference number according to Table 1 in column 1, 
symbol of  the Euclidean normalizer in column 2, basis 
vectors of the Euclidean normalizer referred to the 
basis vectors of  the space group and, eventually, site 

of origin in column 3 

1 P J a/2,b/2,c/2 
2 Z31 /aa,ltb,#c 
3 P 112/m a/2,b/2,c/2 
4 P 12/m 1 a/2,b/2,c/2 
5 Z ~ I 12/m a/2,b/2,1ac 
6 Z 112/m I a/2,ltb,c/2 
7 Z2112/m Im,#b,c/2 
8 Z212/ml laa,b/2,ltc 
9 Pmmm a/2,b/2,c/2 

10 Pnnn (222) a/2,b/2,c/2 
11 Pnnn ([) a/2,b/2,c/2 
12 lmmm a/2,b/2,c/2 
13 Z tmmm a/2,b/2,pc 
14 Z~ban (222) a/2,b/2,/ac 
15 P4222 a / 2 -  b/2,a/2 + b/2, c/2 
16 P4222 a/2 - b/2,a/2 + b/2, c/2; 0,0,~ 
17 Z M22 a/2 - b/2, a/2 + b/2, pc 
18 P4/mmm a/2 - b/2, a/2 + b/2, c/2 
19 P4/mmm a/2 - b/2, a/2 + b/2, c/2; ~,~,0 
20 P42/nnm (42m) a/2 - b/2, a/2 + b/2, c/2 
21 P4=/nnm (42m) a/2 - b/2, a/2 + b/2, c/2; 0,~,] 
22 I4/mmm a/2 - b/2, a/2 + b/2, c/2 
23 Zl4/mmm a/2 - b/2, a/2 + b/2, pc 
24 ZM/nbm (422) a/2 - b/2, a/2 + b/2, I~C; ~,~,01 l 
25 R3m (h) -a , -b , c /2  
26 R3m (r) --a/2 + b/2 + c/2, a/2 - b/2 + e/2, a/2 + b/2 - c/2 
27 Zl3 lm 2a/3 + b / 3 , - a / 3  + b/3, I~c 
28 Z~31m 2a/3 - b/3 - c/3, - a / 3  + 2b/3 - c/3,1aa + #b + pc 
29 P6~22 a,b,c/2 
30 P6:22 a + b , - a ,  c/2 
31 P6222 2a/3 + b/3, - a / 3  + b/3, e/2 
32 P6~22 a,b,c/2 
33 P6422 a + b, -a ,  c/2 
34 P6~22 2a/3 + b/3, - a / 3  + b/3, c/2 
35 Z%22 a,b,#e 
36 Z%22 2a/3 + b / 3 , - a / 3  + b/3, pc 
37 P6/mmm a,b,e/2 
38 P6/mmm 2a/3 + b/3, - a / 3  + b/3, e/2 
39 Z~6/mmm a,b,l~e 
40 Z~6/mmm 2a/3 + b/3, - a / 3  + b/3, #e 
41 Ia3 a,b,c 
42 I4~32 a,b,e 
43 Pm3m a/2,b/2,e/2 
44 Pn3m (z]3m) a/2,b/2,c/2 
45 Pn3rn (3m) a/2,b/2,c/2 
46 Im3m a,b,c 

1 1 47 lm3m a,b,c; ~,¼,~ 
48 lm3m a/2,b/2,c/2 
49 Ia3d a,b,c 

T a b l e  3. Transformations generating all equivalent 
point configurations from a given one (column 1" 

reference symbol according to Table 1) 

1A (x,y,z) 

2A (r,s,t) + (x,y,z) 
2B (r,s,O) +_ (x,y,z) 
2C (r,O,t) +_ (x,y,z) 
2D (0,0,t) + (x,y,z; x , - y , - z )  
2E (0,0,t) + (x ,y ,z;y ,x , -z)  
2F (r,r,r) + (x,y,z) 
2G (0,0,0; ½,½,9 + (x,y,z) 
2H (0,0,0; 0,0,9 + (x,y,z) 
21 +_(x,y,z) 
2J (x,y,z; y,x,z) 
2K (x,y,z;¼+Y, ¼+ x ,~+ z) 

4A (r,s,0; r,s,9 +_ (x,y,z) 
4B (r,0,t; r,½,t) +_ (x,y,z) 
4C (0,s,0; ½,s,0) _+ (x,y,z) 
4D (0,s,0; O,s,9 +_ (xy,z)  
4E (0,0,t; ½,0,t) _+ (x,y,z) 
4F (0,0,t; 0,3,t) _+ (x,y,z) 
4G (0,0,t;½,3,t) + (x,y,z;y,x,--z) 
4H (0,0,t) + (x,y,z; -y,x,--z;  y ,x , - z ;  -x ,y ,z)  
41 (0,0,t) _+ (x#,z;y,x,--z)  
4J (r,r,r) +_ (x,y,z; y,x,z) 
4K (0,0,0; 0,½,0; 0,0,3; 0,3, 9 + (x,y,z) 

• , I  , 1  1 4L (0,0,0, 0,0,½, 3,3,0, ~,3,9 + (x,y,z) 
4 M  (0,0,0; 0,0,9 + (x,y,z; -x ,y ,z )  
4N (0,0,0; 0,0,9 + (x,y,z; - y , - x , z )  
4 0  (0,0,0; 0,0, 9 + (x,y,z; - x , - y , z )  
4P (0,0,0; 0,0,9 + (x,y,z; y,x,z) 

(o,o,o, ~,½,9 + 4Q . l , (x,y,z; y,x,z) 
. I 1 4R (0,0,0, ~,~,9 -+ (x,y,z) 

4S +_(x,y,z; y,x,z) 
4T  +_(x,y,z;¼+Y, ¼+ x, ¼+ z) 
8A (0,s,0; '  i 1 1 ~,s,0; 0,s,~; ~,s, 9 + (x,y,z) 
8B ( 0 , 0 , t ; ½ , 0 , t ;  t . ~ t  _+ O,~,t, ~,~,t) (x,y,z) 
8C (0,0,t; 3,3,t) + (x,y,z;y,x,z) 
8D (o,o,o;3,o,o;o,3,o;o,o,3;o,3,3;½,o,½;3,3,o;3,½,9 + (xo,:) 

0,:,0, 0,:,9 + (x,y,z) 8E (0,0,0;0,0,3; i . I 1 
8F (0,0,0; ¼,¼,¼; ½,3,3; ~,],~) +- (x,y,z) 
8G (0,0,0; 0,0,3; ~,~,,,,~ ~ n. ~,~,~', ,~ + (x#,z; - x y , z )  
8H (0,0,0;0,0,3;11 . x l l ~  ~,~,0, ~,~,~ + (x,y,z; y,x,z) 

1 1 8I (o,o,0; 0,0,½; ½,0,¼; o,~d) + (x~v,z) 
8J (0,0,0; 0,0,9 + (x,y,z; -y , - x , z ;y , x , z ;  - x , - y , z )  
8K (0,0,0; 3,½,9 + (x,y,z; y,x,z) 
8L (0,0,0; ½,3,9 + (x,y,z; ¼ + y, t + x, ¼ + z) 

12A (0,0,t; ~,7,t,2 . 7,~,t)2 ~ + (x,y,z; y,x,--z', - x , - y , z ;  --y,--x,--z) 
12B (0,0,O; O,O,½; ],t,0; ],t,½; ],:},O; ],:~,½) + (x,y,z; - x , - y , z )  

16/ (0,0,0; 3,0,0; 0,3,0; 0,0,3; 0,½,3; ½,0,3; 3,½,0; 3,3,9 + (x,y,z) 
16B (0,0,0; 0,0,½; ½,½,0; ½,3,9 + (x,y,z;y,x,z) 
16C (0,0,0; 0,0,½; 3,0,~; 0,½,¼) + (x~v,z;y,x,z) 

1 1 , 1  1 , 16D (0,0,0; ~,~,~, ~,~,3,, ~,~,~r) -+ (x,y,z;y,x,z) 

24A (0,0,t; ],],t; ],],t) + (x,y,z; y ,x , - z ;  - x , - y , z ;  - y , - x , - - z )  
24B (0,0,0; 0,0,3; ],],0; ],],3; ],],0; ],],½) _+ (x,y,z; - x , - y , z )  
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ingly, here the index of the space group in its 
Euclidean normalizer is infinite, i.e. to any point 
configuration there exists an infinite number of equiva- 
lent ones. These may, however, be distributed among a 
finite number j of sets in such a way that two point 
configurations from the same set are shifted against 
each other parallel to a direction of degeneration, i.e. all 
corresponding isometrics only differ by a translation 
component in such a direction. 

4. Tables of Euclidean normalizers and of isometries 
generating equivalent point configurations 

The information necessary for the direct generation of 
all equivalent point configurations or all possible 
descriptions of a crystal structure from a given one has 
been condensed into three tables. 

Table 1 gives for each space group two references 
leading to its Euclidean normalizer (Cheshire group) in 
Table 2 and to a set of isometrics generating complete 
sets of equivalent point configurations in Table 3. Each 
space group is characterized by its number and by its 
Hermann-Mauguin symbol (columns I and 2). If a 
space group is explicitly described in different settings 
within International Tables for  Crystallography (1983, 
abbreviated IT 1983 in the following) all these settings 
are treated. They are distinguished either by different 
Hermann-Mauguin symbols (monoclinic space 
groups); or by (r) or (h) for rhombohedral or hexagonal 
coordinate description, respectively (rhombohedral 
space groups); or by the site symmetry of the origin. 

The reference to Table 2 is given by a number in 
column 3. Table 3 is referred to by a symbol in column 
4, each such symbol containing a number and a capital 
letter: the number is the index i of the space group as 
subgroup of its Euclidean normalizer (or j in case of 
degeneration), the letter gives an arbitrary labelling for 
the different sets of isometries with the same value of i 
(or j). 

Table 2 is similar to Table 2 in Hirshfeld's paper and 
contains all Euclidean normalizers in settings corres- 
ponding to the space-group descriptions of Table 1. 
The number of entries is larger than in Hirshfeld's table 
because of the additional settings of space groups and 
because an eventual shift of origin between a space 
group and its Euclidean normalizer is indicated. For 
each entry, the reference number is followed by the 
symbol of the Euclidean normalizer. In case of 
degeneration, Z n is used instead of the Bravais letter, n 
giving the number of independent directions with 
degeneration (cf. Hirshfeld, 1968). If the Euclidean 
normalizer is a space group described in different 
settings in IT 1983, these settings are identified as in 
Table 1. The last column contains the basis vectors of 
the Euclidean normalizer expressed in terms of the 
basis vectors of the corresponding space group. In a 

few cases there does not exist a setting in IT 1983 such 
that the origins of space group and Euclidean nor- 
malizer coincide. Then the location of the origin of the 
Euclidean normalizer is added, referred to the coordi- 
nate system of the space group. Degenerate directions 
are indicated by the factor # for the corresponding 
basis vectors. 

Table 3 gives sets of isometries that generate all 
equivalent point configurations from a given one. The 
symbols from column 4 of Table 1 serve as an entry to 
this table. Following each such symbol, a set of 
representatives for all cosets of the space group in its 
Euclidean normalizer is specified. As each coset is 
infinite, these representative isometries can be chosen in 
infinitely many different ways. Even if a reduction 
modulo the translations is used, there remain several 
ambiguities. The selection made for Table 3, therefore, 
has been arbitrary to some extent, but the following 
rules have been taken into account: (1) Each coset 
containing translations is represented by a translation. 
(2) If possible, isometries with the origin as fixed point 
are chosen. (3) Translations selected by the first rule 
are also used in combination with the other isometrics. 
(4) An attempt has been made to minimize the number 
of entries. 

Each set of isometrics is described in a condensed 
way by means of two subsets in separate parentheses: 
the subset of translations and a minimal subset of other 
isometries. The complete set of isometrics is produced 
by combining each triplet from the first parentheses 
with each triplet from the second ones. In case of 
degeneration the continuous translations are indicated 
by letters r,s,t which may take any values. 

The material in Tables 1-3 is limited with respect to 
space groups with specialized metric. As discussed 
above, the Euclidean normalizer of such a group may 
be higher than for the ordinary space groups of the 
same type. No additional information on the Euclidean 
normalizer is given here for such an exceptional case. 

For the comparison of two crystal structures, it may 
be necessary to apply a basis transformation to one of 
the space groups in addition to the isometries of the 
Euclidean normalizer. Normally this situation is easily 
recognized, because the two descriptions refer to 
obviously different settings of the same space group. 
Care has to be taken, however, in the case of a space 
group for which the Euclidean normalizer differs from 
the affine normalizer. If then the metric is near to one of 
the specialized cases, it may be necessary to transform 
the basis vectors in order to arrive at comparable 
descriptions. Another exceptional situation occurs in 
connection with enantiomorphic pairs of space groups. 
Here, without physical reasons, the second crystal 
structure may be described by means of the enantio- 
morphic counterpart of the space group of the first 
structure. The required transformation then may be 
performed by changing the signs of all coordinates. In 
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all these cases, Tables 1-3 can be used as shown in the 
following examples after the appropriate basis 
transformation has been carried out. 

5. Examples for the use of the tables 

Geometr i ca l  s tudies  on po in t  conf igurat ions  

As mentioned above, studies on geometrical proper- 
ties of point configurations frequently have been 
confined to an asymmetric unit of the Euclidean 
normalizer, but in most cases it is necessary to extend 
the results to an asymmetric unit of the space group. 
This extension can be done by means of Tables 1-3, 
even if both asymmetric units are complicated, as in the 
following examples. The procedure indeed is not based 
on the knowledge of any asymmetric units at all. 

According to Fischer (1974), a point configuration 
with reference point ~7 0,~,~ in the general position of 
P213 fulfils the condition for a sphere packing of type 
8 / 3 / c l .  The complete set of point configurations 
equivalent to this one, and therefore with the same 
sphere-packing property, may be calculated as follows. 
The appropriate item in Table 1 reads 

198 P213 49 8L. 

Here, 49 is the reference number to the table of 
Euclidean normalizers (Table 2) and leads to 

49 l a 3 d  a,b,c. 

Therefore, I a 3 d  with the same basis vectors and the 
same origin as P2~3 is the Euclidean normalizer of 
P213. The subgroup index of P213 with respect to I a 3 d  
is 8, as can be learned from the symbol 8L. This 
symbol in addition defines the entry to Table 3 where 
the isometries representing the eight cosets of P213 in 
its Euclidean normalizer I a 3 d  are found in the 
abbreviated form 

8L (0,0,0; ~.~,.~,......~1 1 " ~ _  t__ ( x , y , z ; ¼ + Y ,  ¼ + x ,  ¼ + z ) .  

Combining the contents of the two pairs of parentheses 
results in the eight isometrics listed explicitly in the 
entry column of Table 4. Then the reference point 0,¼,~ 
of the original point configuration has to be trans- 
formed by each of these isometrics (next column). 
Normally, the resulting points represent different but 
equivalent configurations and may directly be used as 
reference points for these. It has to be checked, 
however, whether all cosets really give rise to different 
point configurations. For this, it is sufficient to show 
that none of the transformed reference points is 
contained in the original configuration. As can be seen 
from Table 4, this condition is violated in the example: 
only two different point configurations are generated, 
each by four out of the eight representative isometrics. 
As has been shown above, the inherent symmetry of 
these point configurations must be higher than P2~3, 
and indeed it is I 4 3 d  12 (a,b) with site symmetry 4. 

Dif feren t  descr ipt ions  o f  the same  crys ta l  s t ruc ture  

Na3AsS 3 (Sommer & Hoppe, 1977) may be used as 
an example for the evaluation of all possible descrip- 
tions of a given crystal structure. As the space-group 
symmetry is P213 again, the isometrics necessary to 
generate all these descriptions are the same as in the 
previous example. The resulting eight descriptions are 
given in Table 5. All of them are different, as can easily 
be seen, for example, by choosing appropriate reference 
points for the sites of the sulphur atoms (last column). 
If these coordinates are idealized to multiples of ~, they 
correspond to those of the sphere packing of the 
previous example. The deviations of the sulphur atoms 
from the idealized positions, however, as well as the 
positions of the metal atoms uniquely characterize 
each single description. 

Compar i son  o f  crys ta l  s t ruc tures  

The comparison of different crystal structures 
requires analogous descriptions for all these structures. 

Table 4. Genera t ion  o f  all  po in t  conf igurat ions  equ iva len t  to that  with reference po in t  0,¼,~ in space group  P2~ 3 
(Euc l idean  normal i ze r  I a 3 d )  

Cyclic permutations of all coordinate triplets have to be added. 

Isometries from P213 
X 1 Isometries from Ia3d x,y,z ½ - x, -y ,  ½ + z - , ~ + y, ½ - z ½ + x, ½ - y, - z  

1 3  1 1 1 xce,z 0,I,~ ~,~,~ o,I,~ ~,~,~ 
1 1 7  + y. 1 + x, 1 + z ~.:~,~ O.~r.~ ½,1,~ 0.I.~ 

½ + x, ½ + y, ½ + z ½,t,~ o,I,~ ½,l,i o,I,~ 
I 3 1 + y, ~ + x, 1 + z o,t,~ ½,1,I o,~,~ ~,~,~ 

-x , -y , -z  o,~,i ~,~,~"~ o,I,~ ~,~,~' 
I I - y, ] -x, t - z :,¢,~'s7 0,¼,~ :,~,t 0,],~ 

½- x, ½- Y, ½- ~ ½,t,~ 0,I,I ½,1,~ 0,I,~ 
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Frequently, this condition is not fulfilled by the original 
data. A simple procedure that may be used in such a 
case is illustrated by the example of sodalite 
Na4CI(A1SiO4)3 (LSns & Schulz, 1967), its aluminate 
analog Ca40(AIO2) 6 (Ponomarev, Kheiker & Belov, 
1971), and Zn40(BO2) 6 (Smith-Verdier & Garcia- 
Blanco, 1980). 

Arbitrarily, sodalite has been picked out and all of its 
possible descriptions have been calculated (Table 6). 
The space group of sodalite is P2~3n with the Euclidean 
normalizer Im3m which generates four different 
descriptions. These can directly be compared with the 
original descriptions of the other two structures, though 
these show the higher symmetry I2~3m. Due to this, the 
Wyckoff positions P43n 6(c) and 6(d) occupied by Si 
and AI in an ordered way in sodalite combine to one 
Wyckoff position of I43m and the oxygen position in 
I43m is restricted to x = y. As can be seen from Table 
6, the structures of sodalite and of Zn40(BO2) 6 are 
closely related to each other. The structure of 
Ca40(A102)6, however, differs from these, because the 
orientation of the Ca tetrahedron around the origin is 
opposite to that of the Na or Zn tetrahedra if referred 
to the same description of the anion framework (cf. 
Koch & Hellner, 1981). 

In such a comparison care has to be taken that 
appropriate reference points are used for all descrip- 
tions. The selection of such reference points for all 
kinds of atoms normally poses no problem if done by 
hand. In an automatic procedure either additional rules 
for the choice of all reference points have to be 
established (Parth~ & Gelato, 1983) or all atoms inside 
a unit cell have to be included in the comparison. 

6. T h e  role o f  E u c l i d e a n  n o r m a l i z e r s  in crystal -  
s tructure  d e t e r m i n a t i o n  

A crystal-structure determination may result in any of 
the descriptions compatible with the chosen space- 
group setting. It depends on arbitrary choices during 
the course of the structure determination which of these 
equivalent descriptions is obtained. The nature of these 
choices is subject to the method of structure determina- 
tion used. 

Each description of a crystal structure corresponds 
to a list of structure factors and each change of the 
description causes alterations in this list. In this respect 
two kinds of changes of the description may be 
differentiated: those which only influence phases of 

Table 5. The eight different descriptions of  the NaaAsS 3 structure in space group P213 

As Na(2) Na(1) Na(3) S x,y,z 
x,x,x x,x,x x,x,x x,x,x Generated point Preferred reference point 

~ y , z  0.0281 0.3181 0.5785 0.8104 0.2220,0.6040,0-4981 -0.0019,0.2780,0-3960 
+ y, ¼ + x , l  + z 0.2781 0.5681 0.8285 0.0604 0.8540,0.4720,0.7481 0-0280,0-2519,0-3540 

½ + x, ½ + y, ½ + z 0.5281 0.8181 0.0785 0.3104 0-7220,0.1040,0-9981 0.0019,0-2220,0.3960 
+ y,~ + x,~ + z 0-7781 0.0681 0.3285 0.5604 0.3540,0.9720.0.2481 -0.0280,0.2481,0.3540 

- -x , - -y , - - z  0.9719 0.6819 0.4215 0-1896 0.7780,0.3960,0.5019 -0.0019,0-2220,0-8960 
- - y , ~ -  x, ~ -  z 0.7219 0.4319 0.1715 0.9396 0.1460,0.5280,0.2519 0.0280,0-2481,0-8540 

½-- x, ½--y, ½ -  z 0.4719 0.1819 0.9215 0-6896 0.2780,0.8960,0.0019 0.0019,0-2780.0-8960 
l - - y , l -  x , t -  z 0.2219 0.9319 0.6715 0-4396 0.6460,0-0280,0.7519 -0.0280,0.2519,0.8540 

Table 6. Comparison of  the structures of  sodalite ( four descriptions), Zn40(BO2) 6 and Ca40(A102) 6 

P43n 

Sodalite 

Sodalite 

Sodalite 

Sodalite 

/~i3m 

Zn40(BOz)6 

Ca40(AlOz)6 

2(a) 6(c) 6(d) 8(e) 24(i) 
0,0,0 I I 1 1 ~,~,0 ~,0,~ x,x,x x,y,z 

CI AI Si Na 
0.1777 

CI Si AI Na 
0.1777 

CI AI Si Na 
-0-1777 

CI Si AI Na 
-0 .1777 

0 
0.1487,0.1401,0.4385 
0 
O. 1401, O. 1487, 0.4385 
0 
0.1487,0-1401.-0-4385 
0 
0.1401,0.1487,-0.4385 

2(a) 12(d) 8(c) 
0,0,0 ~ ~,~,0 X,X,X 

24~) 
X~X,Z 

O B Zn 
0.1533 

O AI Ca 
-0 .160  

O 
0.1398,0-4147 
O 
0.135,0.413 

Transformation 

XO',Z 

½+x, ½+y, ½+~ 

--x . - -y . - -Z 

½-x,½-y, ½-z 

X,)',z 

x,J',7. 
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structure factors but leave the structure amplitudes 
unchanged, and those which in addition lead to 
different structure amplitudes for the same triplet of  
indices. In the latter case, each alteration of the 
description is associated with a permutation of the set 
of indices. Changes of the first type can always be 
represented by a translation or an inversion; changes of 
the second type only exist in a space group, the Laue 
class of which differs from that of its Euclidean 
normalizer (e.g. P213 with normalizer Ia3d).  The Laue 
class of G then is a subgroup of index n ~: 1 of the Laue 
class of  Ne(G). 

Independent of  the method used, a structure 
determination normally starts from a set of structure 
amplitudes with attached indices. In the case of 
different Laue classes, some of the possible descriptions 
have already been singled out by indexing the diffrac- 
tion pattern. The selection among the remaining 1/n of 
all equivalent descriptions is done by arbitrary restric- 
tions on certain phases in direct methods, or by fixing 
the position of the first atom(s) in Patterson and 
trial-and-error procedures (cf. Hirshfeld, 1968). 

In Table 3, representative isometries that may  cause 
a change of the indexing are always listed at the end. In 
the example of P213 the subgroup index of the Laue 
classes is 2, and the four isometries (0,0,0; 11 ix + ~,~,~ _ 

(¼ + y, ¼ + x, ¼ + 2) give rise to a change of hkl  into 
khl. Therefore, only the first, third, fifth and seventh 
descriptions of Na3AsS a in Table 5 are compatible with 
the indexing of the original data. 
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